Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(1): e20201503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222358

RESUMO

Quantitative data obtained from native forests is costly and time-consuming. Thus, alternative measurement methods need to be developed to provide reliable information, especially in Atlantic Rain Forests. In this study we evaluated the hypothesis that the combination of an Airborne Laser Scanner (ALS) and an Unmanned Aerial Vehicle (UAV) can provide accurate quantitative information on tree height, volume, and aboveground biomass of the Araucaria angustifolia species. The study was carried out in Atlantic Rain forest fragments in southern Brazil. We tested and evaluated 3 digital canopy height model (CHM) scenarios: 1) CHM derived from ALS models; 2) CHM derived from UAV models; and 3) CHM from a combined ALS digital terrain model and UAV digital surface model. The height value at each tree coordinate was extracted from the pixel in the three evaluated scenarios and compared with the field measured values. ALS and UAV+ALS obtained RMSE% of 6.38 and 12.82 for height estimates, while UAV was 49.91%. Volume and aboveground biomass predictions are more accurate by ALS and UAV+ALS, while the UAV produced biased estimates. Since the ALS is currently used, periodic monitoring can be carried out by a combination of active (ALS) and passive (UAV) sensors.


Assuntos
Araucaria , Monitorização de Parâmetros Ecológicos , Biomassa , Lasers , Árvores , Dispositivos Aéreos não Tripulados , Monitorização de Parâmetros Ecológicos/instrumentação , Monitorização de Parâmetros Ecológicos/métodos
2.
An Acad Bras Cienc ; 90(2 suppl 1): 2491-2500, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30133578

RESUMO

Floristic surveys and diversity indices are often applied to measure tree species diversity in mixed tropical forest remnants. However, these analyses are frequently limited to the overall results and do not allow to evaluate the spatial variability distributions of tree diversity, leading to develop additional tools. This study aimed to estimate the spatial variability of tree diversity and map their spatial patterns in a Brazilian mixed tropical forest conservation area. We used indices to measure the tree species diversity (dbh ≥ 10 cm) in 400 sampling units (25 m x 25 m) from a continuous forest inventory. Semivariograms were fitted to estimate spatial dependences and punctual kriging was applied to compose maps. Mean diversity values were constant in the continuous inventories, indicating a forest remnant in an advanced stage of ecological succession. On the other hand, tree diversity presented spatial patterns identified by geostatistics, in which the dynamics were composed of heterogeneous mosaics spatially influenced by tree species with different ecological features and densities, gap dynamics, advancement of forest succession, mortality, and Araucaria angustilofia's cohorts.


Assuntos
Biodiversidade , Árvores/classificação , Brasil , Análise Espacial , Clima Tropical
3.
An Acad Bras Cienc ; 90(2): 1759-1774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791562

RESUMO

It is presented the theme additivity of biomass of tree components. To evaluate and discuss this context, experimental information collected in forests of Acacia mearnsii De Wild. was used. Equations for components (stem and crown) and total biomass were fitted by means of two procedures: 1) generalized nonlinear least squares and 2) weighted-nonlinear seemingly unrelated regressions. Analyzing the performance of the estimators, it can be concluded that the two tested procedures are equivalent. On the other hand, this conclusion differs when evaluated the consistency and efficiency of the estimators. Fitting equations for the components and for the total biomass by an independent way is not realistic, because from a biological point of view the estimates of biomass are inconsistent, i.e., are not additive. The biomass estimates of the components and of the total, resulting from equations adjusted by means of systems of equations, provided narrower confidence intervals in relation to the equations adjusted independently, and is therefore more efficient. The second procedure presents better biological properties and statistics to estimate allometric equations for biomass of the components and for the total when compared with the independent estimation, thus it should be the method to be used.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Acacia/anatomia & histologia , Acacia/crescimento & desenvolvimento , Análise de Variância , Intervalos de Confiança , Monitoramento Ambiental , Modelos Teóricos , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Árvores/anatomia & histologia
4.
An. acad. bras. ciênc ; 89(3): 1895-1905, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886731

RESUMO

ABSTRACT Basal area (BA) is a good predictor of timber stand volume and forest growth. This study developed predictive models using field and airborne LiDAR (Light Detection and Ranging) data for estimation of basal area in Pinus taeda plantation in south Brazil. In the field, BA was collected from conventional forest inventory plots. Multiple linear regression models for predicting BA from LiDAR-derived metrics were developed and evaluated for predictive power and parsimony. The best model to predict BA from a family of six models was selected based on corrected Akaike Information Criterion (AICc) and assessed by the adjusted coefficient of determination (adj. R²) and root mean square error (RMSE). The best model revealed an adj. R²=0.93 and RMSE=7.74%. Leave one out cross-validation of the best regression model was also computed, and revealed an adj. R² and RMSE of 0.92 and 8.31%, respectively. This study showed that LiDAR-derived metrics can be used to predict BA in Pinus taeda plantations in south Brazil with high precision. We conclude that there is good potential to monitor growth in this type of plantations using airborne LiDAR. We hope that the promising results for BA modeling presented herein will stimulate to operate this technology in Brazil.


Assuntos
Florestas , Pinus taeda/crescimento & desenvolvimento , Clima Tropical , Brasil , Biomassa , Tecnologia de Sensoriamento Remoto , Modelos Teóricos
5.
An Acad Bras Cienc ; 89(3): 1895-1905, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813098

RESUMO

Basal area (BA) is a good predictor of timber stand volume and forest growth. This study developed predictive models using field and airborne LiDAR (Light Detection and Ranging) data for estimation of basal area in Pinus taeda plantation in south Brazil. In the field, BA was collected from conventional forest inventory plots. Multiple linear regression models for predicting BA from LiDAR-derived metrics were developed and evaluated for predictive power and parsimony. The best model to predict BA from a family of six models was selected based on corrected Akaike Information Criterion (AICc) and assessed by the adjusted coefficient of determination (adj. R²) and root mean square error (RMSE). The best model revealed an adj. R²=0.93 and RMSE=7.74%. Leave one out cross-validation of the best regression model was also computed, and revealed an adj. R² and RMSE of 0.92 and 8.31%, respectively. This study showed that LiDAR-derived metrics can be used to predict BA in Pinus taeda plantations in south Brazil with high precision. We conclude that there is good potential to monitor growth in this type of plantations using airborne LiDAR. We hope that the promising results for BA modeling presented herein will stimulate to operate this technology in Brazil.


Assuntos
Florestas , Pinus taeda/crescimento & desenvolvimento , Biomassa , Brasil , Modelos Teóricos , Tecnologia de Sensoriamento Remoto , Clima Tropical
6.
An Acad Bras Cienc ; 87(3): 1833-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26375018

RESUMO

The objective is to study the dynamics of photosynthetic radiation reaching the soil surface in stands of Acacia mearnsii De Wild and its influence on height growth in stands. This fact gives rise to the formulation of the following hypothesis for this study: "The reduction of the incidence of light inside the stand of black wattle will cause the inflection point in its height growth when this reaches 4 to 5 m in height, i.e. when the stand is between 2 and 3 years of age". The study was conducted in stands in the state of Rio Grande do Sul, Brazil, where diameters at breast height, total height and photosynthetically active radiation available at ground level were measured. The frequency tended to be more intense when the age of the stands increases. It was evident that a reduction of light incidence inside the forest occurred, caused by canopy closure. Consequently, closed canopy propitiated the competition of plants. This has affected the conditions for growth in diameter and height of this species, reason why it becomes possible to conceive the occurrence of an inflection point in the growth of these two variables, confirming the formulated hypothesis.


Assuntos
Acacia/crescimento & desenvolvimento , Luz , Fotossíntese/fisiologia , Árvores/crescimento & desenvolvimento , Acacia/anatomia & histologia , Acacia/classificação , Brasil , Modelos Biológicos , Solo/química , Árvores/anatomia & histologia , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA